This is the third blog in a series that explains how organizations can prevent their Data Lake from becoming a Data Swamp, with insights and strategy from Perficient’s Senior Data Strategist and Solutions Architect, Dr. Chuck Brooks. Read the previous blog, here.
In the First article in this series, I explained the five components necessary to prevent a Data Lake from Becoming a Data Swamp. In this blog, we discuss the third capability: Implementing data quality analysis and reporting.
A data lake will contain whatever source applications system and third-party data you put in it. That usually means your data will have the following quality issues.
Missing values
Typos
Data entered in the wrong field
Data type mismatches
Obsolete or invalid lookup values.
For most companies, the data could be anywhere from a little dirty to completely covered in dirt. Most likely it’s somewhere in between, and different for the different source systems. Typically, when you mix data from all your systems together, all that dirt starts to build up and more and more dirty data keeps coming into the data lake. Think of the insights you’re hoping to get out of your data. Do you want that insight to come out of a clean Data Lake full of accurate, consistent, high-quality data, or do you want to take your chances with “insight” based on a dirty Data Lake?
Understand the quality of data in the Data Lake
Often companies do not have the ability to analyze or understand data quality problems until the data has been ingested into the Data Lake. Source systems often do not have the computing or storage capacity to perform iterative detailed quality analysis on the data. However, in the Data Lake, we can implement simple python and SQL-based tools to analyze the data, or we can purchase third-party tools like Talend, Collibra, and others. I am partial to implementing three simple, but powerful homemade tools. The first tool is pandas-profiling, the second collects statistical value on each column in the data lake and the third provides the ability to run SQL statements that expose specific quality issues in the data.
Pandas profiling is an open-source Python module that can quickly do exploratory data analysis with just a few lines of code. Pandas Profiling also generates interactive reports in a web format that can be presented to any person, even if they don’t know programming.
The second is a simple python program that performs statistics-based profiling. The statistics profiling tool should capture the following statistics:
Nulls: Number of missing values in a column
Cardinality: Number of unique values in a column
Selectivity: Ratio of cardinality to the number of rows, which provides uniqueness of data in a column
Density: Number of values in a column relative to the number of rows, that is, the number of non-NULL values in a column
The third tool should allow data workers to feed SQL statements to an automated process that will store the statements to be run at a user-specified frequency. When run the SQL statements will produce output tables stored in an internal database that contain quality data metrics or results. This tool can produce specific quality results.
Improving Data Quality
While quality analysis is most often performed in the Data Lake. It is important to point out that data should never be changed/fixed in the Data Lake it should be fixed in the source systems and the fixes will be updated and propagated to the Data Lake. Fixing the data in the source systems will improve data quality across your organizations and keep your data lake from becoming a data swamp.
Perficient’s Cloud Data Expertise
The world’s leading brands choose to partner with us because we are large enough to scale major cloud projects, yet nimble enough to provide focused expertise in specific areas of your business. Our cloud, data, and analytics team can assist with your entire data and analytics lifecycle, from data strategy to implementation. We will help you make sense of your data and show you how to use it to solve complex business problems. We’ll assess your current data and analytics issues and develop a strategy to guide you to your long-term goals.
Download the guide, Becoming a Data-Driven Organization with Google Cloud Platform, to learn more about Dr. Chuck’s GCP data strategy.
Leave A Comment